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Much attention has been paid to the (Euclidean) Taub-NUT metric because the geodesic
on this space describes approximately the motion of two well-separated interacting mono-
poles. It is also well known that the Taub-NUT metric admits a Kepler-type symmetry. In
this paper, the Taub-NUT metric is extended so that it still admits a Kepler-type symmetry.
The geodesics of this metric will be investigated. In particular, regularization of singular
geodesics is studied by use of a method from dynamical systems. Further, some geometrical
properties of the extended Taub-NUT metric are cleared up. In order that the extended
Taub-NUT metric either has a self-dual Riemann curvature tensor or is an Einstein metric,
it is necessary and sufficient that it coincides with the original Taub-NUT metric up to a
constant factor. Furthermore, a class of extended Taub-NUT metrics which have a self-dual
Weyl curvature tensor is found. This class of metrics, of course, includes the Taub-NUT
metric.
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1. Introduction

Much attention has been paid to the Euclidean Taub—-NUT metric, since in
the long-distance limit the relative motion of two monopoles is described ap-
proximately by its geodesics [1,2]. From the symmetry viewpoint, of particular
interest is the fact that the geodesic motion admits a Kepler-type symmetry, if a
cyclic variable is gotten rid of [3,4]. L.Gy. Fehér and P.A. Horvathy investigated
the same symmetry [5], and soon extended the symmetry to the 0 (4, 2) dynam-
ical symmetry well known for the Kepler problem, in a paper co-authored with
B. Cordani [6]. Those authors presented a general framework for understand-
ing Kepler-type symmetries [7]. See also ref. [8] for a review of the dynamical
symmetry of monopole scattering.

A generalization of the Euclidean Taub-NUT metric is to be discussed in the
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form

dsg = £(r)(dr? + r}(d6? + sin* 0de?)) + g(r)(dy + cosOdp)>,  (1.1)
where \/r, r > 0, is the radial coordinate of R* — {0} and the angle variables
0,0, w) (0 <0 <7m 0< ¢ <2r, 0< w < 4n) parametrize the unit three-

sphere S?, and / (r) and g (r) are arbitrary functions in r. If /() and g (r) are
taken to be

4m ' (4m)?
f(r)—l-l—Ta g(’)—m’ (1.2)
respectively, the metric d5(23 becomes the Euclidean Taub-NUT metric with
m = —1/2. For m > 0, the metric (1.1) with (1.2) is just the space part of

the metric of the celebrated Kaluza-Klein monopole of Gross and Perry and of
Sorkin [9]. In this article, by the Taub-NUT metric simply the metric (1.1) with
(1.2) is meant. Interest will center on those metrics ds(z; that are generalized so
that they may admit the same Kepler-type symmetry as the Taub-NUT metric
does when the cyclic variable  is gotten rid of. In this paper, those metrics will
be referred to as the extended Taub-NUT metrics and denoted by ds because
of the Kepler-type symmetry. It will be shown that for dsZ the functions f (r)
and g (r) take, respectively, the form

ar + br?
1 +cr +dr?’
where a, b, ¢, d are constants. If the constants are subject to the constraints

¢ =2bla, d=(bla)’. (1.4)

the extended metric coincides, up to a constant factor, with the original Taub-
NUT metric on setting 4m = a/b.

This paper has two aims. One is to derive the extended Taub—-NUT metric dsf(
and to study its geodesics from the viewpoint of dynamical systems. The other
aim is to investigate geometrical properties of the extended Taub-NUT metric
dslz(, say, to ask when it 1s Einstein, when it has a self-dual Riemann curvature
form, and when it has a self-dual Weyl curvature tensor. These questions are
raised in order to observe to what extent the metric ds is actually extended. In
fact, the Taub—NUT metric has received interest as a self-dual Einstein metric
[10].

The organization of this article is as follows: Section 2 is concerned with setting
up the generalized Taub-NUT metric ds2 and contains a few observations on
the metric. In fact, the components of the curvature forms are written out by use
of an orthonormal basis together with the functions f (r) and g (r) included in
the metric. The components of the Riccl tensor are written out as well in terms of
f(r) and g (r). By using the expressions obtained, some observations are made
on dsé; the functions f (r) and g (r) are determined so that the metric dsé may
be flat, conformally flat, or Einstein in addition to being conformally flat.

f(r)=—7;+b, g(r) = (1.3)
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Section 3 contains the derivation of extended Taub-NUT metrics from the
viewpoint of dynamical systems. The generalized Taub-NUT metric ds3 de-
termines a geodesic flow system on the cotangent bundle 7= (R* — {0} ), which
system can be reduced to a system on 7*(R3 — {0}) by getting rid of a cyclic
variable. The reduced system admits manifest rotational invariance, and hence
has a conserved angular momentum. With the assumption of the existence of an
additional conserved vector, a Runge-Lenz-type vector, for the reduced system,
the functions f (r) and g{(r) are to be determined to bring about the extended
Taub-NUT metric ds. Trajectories of the reduced system from dsZ are then
discussed by use of the conservation of the angular momentum and the Runge-
Lenz vector. It turns out that generic trajectories are conic sections. However,
since the metric could have a singularity, singular trajectories could possibly
occur. By using the conservation law, regularization of singular trajectories is
performed, which, in turn, becomes regularization of singular geodesics for ds
as it is. On the basis of trajectories analyzed in the reduced system, the geodesic
equation for dsg is dealt with to look for closed geodesics.

Section 4 is concerned with the Riemann curvature tensor for dsZ. It will be
shown that the constraints (1.4) are necessary and sufficient conditions for the
extended Taub-NUT metric dsg either to be an Einstein metric or to have a
self-dual Riemann curvature tensor. As was anticipated in the sentence about
(1.4), the metric dslz( in this case coincides with the Taub-NUT metric up to a
constant factor. Hence the self-duality of the Taub-NUT metric [10] is verified
as a byproduct.

Section 5 contains the investigation of a necessary and sufficient condition for
the metric dslz( to have a self-dual Weyl tensor, or to be conformally self-dual. It
will turn out that either the metric dsZ with 2 + ¢r > 0 is conformally self-dual
or the metric dsg with 2 + ¢r < 0 is conformally anti-self-dual, if and only if
d = ¢?/4. This class of metrics contains, of course, the class of those studied in
section 4.

In the present paper, the Kepler-type symmetry is a guiding principle of the
generalization of the Taub-NUT metric. Because of the conserved angular mo-
mentum and Runge-Lenz vectors, all the bounded trajectories for the reduced
system are closed. One can then take another approach to the generalization of
the Taub-NUT metric from the viewpoint of closed trajectories. In fact, one
may ask when all the bounded trajectories for the reduced system are closed. It
will be shown in another paper that there are two types of functions f and g
and therefore two types of such metrics. One is the extended Taub-NUT metric
dsZ mentioned above, which has a resemblance to the Kepler problem in a way.
The other is determined by the functions

art + br?

— ar? -
fr)y=ar+b glr) = —5—7a.

(1.5)
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where a, b, c,d are constants. In contrast with the metric dsf-(, these metrics
will be called harmonic oscillator type metrics for the reason that the reduced
system has a marked resemblance to the harmonic oscillator. Details will appear
elsewhere [11].

2. Setting up the structure equations

In this section, we are to treat generalized Taub-NUT metrics and to write
out their Riemann curvature tensor. To start with, we note that the curvilinear
coordinates (r, 8, ¢, ) are related to the Cartesian coordinates (y!, y2, y3,y%)
in R* by

vl = Vrcosi(w + ¢)cos 16, vi = Vrsini(y + ¢)cos 10,
¥ = Vreosi(w—¢)sin6,  y*= rsin(y —¢)sinlf.  (2.1)
The ranges of variables are the same as stated in the introduction. The gener-

alized Taub-NUT metric we are to treat, dsé, is expressed as in (1.1). It is
convenient for us to introduce orthonormal one-forms «* defined by

w' = f(r)2dr,
2= rf(M'*(=sinydf + cosy sinfdg),
3= rf (1) (cosy dO + siny sinfde),
w* = g(r)'2(dy + cosfdg). (2.2)

e
I

g
I

Clearly, one has dsg = Y, (w')2.

The setting of our generalized Taub-NUT metric is in keeping with the bundle
structure of the space R* — {0}: U(1) — R* — {0} — R* —{0}. In fact, the action
of the structure group U(1) is expressed as v —  + t with the other variables
fixed, and has the infinitesimal generator 9 /0. A dual form dy + cos&d¢ to
3 /0y is the connection form for the natural connection defined on that bundle.
w* is a multiple of the connection form, a vertical form, and the forms w', w?,
and w? are horizontal to the U(1) action. In a dual manner, one can introduce
orthonormal vector fields ¢; dual to @',

o= 1 9
N IORErT
€ = ;<Asinwi + cost//cscHi —COSl//COt@i)
rf (2 o6 O oy )’
e3 = ——'——(COS(//E— +sinwcsc0i—sinwcot@j—>,
rf(ryy2 06 210 1427}
€4 = 1 0 (2.3)

g(N72oy’
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The vector fields e;, e,, e3 and the e4 are horizontal and vertical, respectively,
with respect to the natural connection stated above. Further, we notice that the
coordinates (r, 0, ¢), when projected on the base space R* — {0}, can be looked
upon as spherical coordinates.

2.1. THE CONNECTION AND CURVATURE FORMS

We are now ready to consider the Levi-Civita connection and its curvature
forms. The covariant derivative of the frame ¢; i1s put in the form

dvei = Za){ej, (2'4)

where w’ are one-forms called connection forms with respect to the Levi-Civita
connection. One of Cartan’s structure equations is then expressed as
do' + ) wirel =0. (2.5)
J
A lengthy calculation provides the connection forms as follows:
0 —A(rw? -A(rw’ —-B(r)w*
' A(r)w? 0 —-C(nNw* =D(rw?
(w]) = , (2.6)
A(rw? C(r)w? 0 D(r)w?
B(r)w* D(r)w’ —D(r)w? 0

where the functions A(r) to D(r) are given by

2
Alr) = d(r f(r))/drz’
dg(r)/dr

B(r) = 22

_glr)=2r11(r)
U = e

_ &'~

The other structure equation of Cartan gives the curvature forms .Q,-j ,
.Qij =dw{+2wi/\wli‘. (2.8)
k

A straightforward calculation results in
QF = [A(N?2+ A () f(r) 20" Aw?
+D(r)[A(r) — B(r)]o® A o,
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Q= [AW + A (N Vo' A

—D(r)[A(r) = B(r))o* A w?,
Q= B+ B f(r) "o A w

—2D(r)[A(r) = B(r)]w? A o?.
Q) = [B(NCY + C' () (D~ o' Aw!

+[2C(MHDr) + A2 + DM w? A o,
QF = [AMD(r) + D' (r) f (1)~ o' A w?

+[A(F)B(r) = D(r)?*w? A w?,

Qf = —[4D(r) + D' (N f (17w A w?
+[A(B) =DM w? A w?, (2.9)

where the prime denotes the derivative with respect to », and the other compo-
nents are known from the anti-symmetry 2/ + Q} = 0. The Ricmann curvature
tensor has the components RY,, := £/ (ex,e/). As it would take a page to list

the explicit form of R{k{, we proceed, instead, to calculate the Ricci tensor with

components R;; and the scalar curvature R. They are given as follows:

Riy = 2[4 + A/ ()P = [BG)? + B/ (1) f(r)72],
Ry = =240 = A/ (1) f (1)~ =2C(1)D(r) = A(r)B(r),

Ryy = =2A(r)?> = A (r)f (r)"Y2=2C(r)D(r) — A(r)B(r),
Rys = —B(r)? =B (r)f(r)""2 +2D(r)> - 24(r)B(r),
Rij =0 fori# (2.10)
R = —6A(r) =44 (r)f(r) "2 2B = 2B (1) f (1)~ 12
—4C(r)D(r) — 44(r)B(r) + 2D(r)~ (2.11)

2.2. EASY OBSERVATIONS ON THE GENERALIZED TAUB-NUT METRIC
We here make a few observations on the generalized Taub-NUT metric, using

the expression obtained in the last subsection. First we give the expression of
the standard flat metric dsZ,

ds§ = i, (dvh)?
= 4ir[dr2 + r2(d6? + sin® 0 d¢? + (dy + cosHdp)?)]. (2.12)

We start with the following proposition.

Proposition 2.1. In order that the generalized Taub-NUT metric dsé be flat, it is
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necessary and sufficient that
fr) = %, g(r) = r’f(r) = ar, a> 0: const., (2.13a)

or

2 g =rfr) =

fr) =3

%, a > 0: const. (2.13b)

Proof. The condition Rjk[ = 0 yields the following simultaneous differential
and functional equations for f (r) and g(r), after a long calculation along with
(2.9):

d
5 ) =2 f (), g =11 (2.14)
These are easily solved to give (2.13a) and (2.13b), as desired. |

It is to be noted that the metric corresponding to (2.13a) is a constant multiple
of the standard flat metric (2.12). On the other hand, the metric corresponding to
(2.13b) can be transformed into the standard flat metric through the coordinate
transformation Ry = 2(a/r)'/?, where Ry is the usual radial variable in R?,

Further, comparison of the generalized Taub—-NUT metric (1.1) with the stan-
dard flat metric (2.12) provides the following proposition.

Proposition 2.2. The generalized Taub-NUT metric dsg is conformally flat, if
and only if

g(r) = rif(r). (2.15)

This proposition can also be proved by showing that the conformal curvature
tensor with components C j’fk[ defined by

Cle = Rl — L(8LRjo = 6{Rjx + 6] Ryx — 6] Rig) + LR (S0 — 6{0y) (2.16)

vanishes if and only if g(r) = r?f (r). We will come back to this question in
section 5.

In addition, we can prove the following theorem under the condition that ds}
is conformally flat.

Theorem 2.3. In order that the conformally flat generalized Taub-NUT metric
be an Einstein metric, it is necessary and sufficient that

() = g(r) =r2f(r), a>0,p, y: consts. (2.17)

>
r(f +yr)¥’

Proof. Before proving this, we have to remark that (2.17) reduces to (2.13a) or
(2.13b), according to whether y or 8 is taken to be zero. With the assumption
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g(r) = r2f(r), the functions (2.7) are put in the simpler form

B _d(Af(r))/dr
Alr) = Blr) = samer o T
!

Then the Ricci tensor given in (2.10) turns into
Ry = =3(A(r)> + A (r) f(r)~12),
Rzz = R33 = R4y = —3A(F)2 —A’(r)f(r)‘l/z + 2D(l)2 (2.19)

From this it follows that the condition for the metric under consideration to be
an Einstein metric, R;; = %Ré[j, results in the condition

A(ry = =D f ("2 (2.20)
From (2.18) and (2.20), we obtain the differential equation for f (r),
3+ 2rf (N (r) + 3PS (1) =22 () f" (r) = 0. (2.21)

Setting A4 (r) := log f (r), one finds that the derivative #’(r) is subject to the
Riccati equation

d2h  (dh\* 2dh 3

ﬁ‘(&?) “rar 20

which is easily integrated, and eventually one obtains (2.17), a solution to
(2.21). Conversely, from (2.17) to (2.19), one has immediately the equation

R, = P75 (2.22)
(87

This completes the proof. O

Before ending this section, we should point out that the Einstein metric derived
above is, furthermore, of constant curvature. In fact, as is well known, if a
Riemannian space M is conformally flat and Einstein (dim M > 3), it is of
constant curvature. In our case, the curvature tensor is shown to satisfy the

following equation:
R, = ﬂ—y(a,{(s,/ — 8]0y ). (2.23)

193 P

3. Extended Taub-NUT metrics

In this section, we are to determine the functions f (r) and g (r) contained in
dsé from the viewpoint of dynamical systems. To start with, we consider geodesic
flows of the generalized Taub-NUT metric dsé, which has the Lagrangian L on
the tangent bundle 7 (R* — {0}),

L=17r[r*+r26% +sin?062) ] + $g(r)(y + cos 0 ¢)?, (3.1)
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where (r,6,6,y,r,0,¢, ) stand for coordinates in the tangent bundle. The
conserved quantity for the cyclic variable y is given by

i=g(r)(y + cosf ). (3.2)

Under this condition, the dynamical system for the geodesic flow on 7T (R*—{0})
can be reduced to a system on 7 (R? — {0}). This process is in accordance with
the bundle structure R* — {0} — R? — {0}, since the structure group action is
expressed as ¢ — y + t with the other variables fixed.

In the Hamiltonian formalism, the reduced Hamiltonian system can be de-
scribed on the reduced phase space T* (R? — {0}) together with the symplectic
form w and the reduced Hamiltonian function, which are given, respectively, by

3

A H A v

w =) dp;Adxt =553 e xdxt Adx”, (3.3)
A=1 )],A,I/
3
| u?

H= 5= : , 3.4
70 2Pt 5 G4

where x = (x*) and p = (p;) are vectors in the factor spaces R> — {0} and
R3, respectively, of the reduced phase space T*(R? - {0}) = (R? - {0}) x R3,
and ¢,,, denotes the Levi-Civita symbol with indices ranging over 1,2,3. See, for
example, ref. [12] for the reduction. As is seen in (3.3), the reduced symplectic
form w contains the two-form representing a monopole field with strength u.
The equation of motion is determined through the Hamiltonian vector field
Xu defined by 1(Xy)w = —dH, where 1 denotes the interior product. After a
calculation, we find the Hamiltonian vector field Xy, and thereby the equation
of motion in the form

dx _»p

e = f(ry

dp _ [0 2 &)

dr ~ 2rf(r)2x +H ng(r)zx r3f(r)pxx' (3-5)

Owing to the obvious spherical symmetry, we can easily show that the angular
momentum vector

J=xxp+ (u/r)x (3.6)
is a conserved vector. In fact, for an arbitrary infinitesimal rotation
X =(&xx)-0/0x + (Exp)-0/9p, EcRS (3.7)

one has
H{X)w = -¢-4J. (3.8)
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3.1. THE DERIVATION OF EXTENDED TAUB-NUT METRICS

We assume here that in addition to the angular momentum vector there exists
a conserved vector R of the following form with an unknown constant «:

R=pxJ—-(k/r)x. (3.9)

This is an analog of the Runge-Lenz vector well known for the Kepler problem.
It is also well known that the reduced system from the geodesic flow system
for the Taub-NUT metric admits a Kepler-type symmetry [3-6]. We wish to
determine the functions / (r) and g (r) contained in the Hamiltonian (3.4) on
the assumption of a conserved vector R, and thereby to find an extended Taub-
NUT metric. Now, from (3.5) it follows that the vector R is a conserved vector,
re.,dR/d: = 0, if and only if

_ P s g () p
K= P g T (3.10)

which should give rise to differential equations for f (r) and g (r).
Since (3.10) is an identity in r and |p|, the coefficient of |p|?> must vanish, so
that //(r) = 0. We thus have

f(r) = b = const. # 0. (3.11)
Then, eq. (3.10) turns into a differential equation for g (r),
g () 2kr—u*)

g2 T T T 0.
which is easily integrated to give
br?
g(r) = Toer 1 dn d:const., (3.12)
where ¢ = —21(//12. Thus f (r) and g (r) are determined in a simple manner. It

1s to be noted that along with the functions thus obtained the Hamiltonian takes

the form , ,
_plm w1l ¢
H = o +2b r2+r+d,

which is an extension of the MIC-Zwanziger Hamiltonian {12-14].

We can take another way to obtain the conserved vector (3.9). Relaxing the
condition of conservation, we may think of (3.9) as a conserved vector under the
condition that the total energy is conserved. Setting the value of the Hamiltonian
H to E, we can rewrite (3.10) in the form

o= A E + B s 0) = [ (g ()]
r 2g(r)?
In order that the right-hand side of (3.13) is constant in r, the coefficient of E
must be constant. Therefore, one can set

—r2f'(r) = a, a:const., (3.14)

. (3.13)
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which is easily integrated to give

f(r) =a/r+b, b:const. (3.15)
Then, eq. (3.13) comes out to be a differential equation for g(r),
2 u? dfa/r+b
—x - —— ] == .16
/12"2 (K ak r ) dr ( g P (3 )
which is solved by
ar + br?
= : . 17
g(r) Tt dr d: const., (3.17)
where ¢ = 2(aE — k)/u?. In this case, the Runge-Lenz vector takes the form
R=pxJ—kx/r, with =aE—%c,uz, (3.18)

from which we find that the vector R is in fact conserved when E is a constant. It
is to be noted that if a = O eqgs. (3.15) and (3.17) reduce to (3.11) and (3.12),
respectively. The above discussion results in the following theorem.

Theorem 3.1. Assume that the reduced Hamiltonian system from the geodesic
flow system for a generalized Taub-NUT metric dsé has a conserved Runge-
Lenz vector of the form (3.9). Then dsg becomes the extended Taub-NUT metric
dsg given by (1.1) with (1.3),

a+brigr 4 2(40? 4 sin0dg?)) + 4T

P m(dl//+cosﬁd¢)2

(3.19)

dslz( =

Ifab >0and c?—-4d < 0orc > 0, d > 0, no singularity of the metric appears
in R* — {0}. However, if ab < 0, a manifest singularity appears at r = —a/b.
Singular geodesics approaching r = —a/b will be discussed later.

3.2. TRAJECTORIES OF THE REDUCED SYSTEM

We denote by Hx the Hamiltonian (3.4) with f (#) and g (r) given by (3.15)
and (3.17), respectively. For the Hamiltonian system (7*(R? — {0}), w, Hk)
the existence of the Runge-Lenz vector in addition to the angular momentum
vector has a geometric consequence of interest on trajectories in the base space
R3 — {0}. The discussion runs parallel to the case of the Taub-NUT metric [8].
As 1s easily seen from (3.6), the inner product of J with x/r is given by

J.x/r=upu, (3.20)

which means that trajectories lie on a cone with axis J. We assume for a while
that x4 # 0. Setting a conserved vector

N = uR + «J (3.21)
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with k given in (3.18), we have
N-x = pu(J]?—u?), (3.22)

which implies that trajectories lie also in the plane perpendicular to N. Hence, it
turns out that trajectories are conic sections. The form of the trajectory depends
on the inclination of the plane. Since

N-J =x([JP?-u?),
IN|> = [1? (2bE —du?) + k2 1(|J P — 12), (3.23)

comparison of the plane’s inclination angle with the cone’s opening angle shows
that the trajectories are ellipses, parabolae, or hyperbolae, according to whether
2bE — du? is negative, zero, or positive, as long as x # 0 and |J| # |u|. If
k = 0 and |J| # |u|, the trajectories are all hyperbolae because of N-J = 0. If
|J] = |u|, the cone collapses to a line and no conic sections appear. This case is
to be discussed below.

If 4 = 0, the cone becomes a plane perpendicular to J. We are then left
with the same setting as the Kepler problem. Hence, trajectories are expressed
as conic sections if J # 0, as is well known.

We point out here that the integrals J and R satisfy the following Poisson
bracket relations with respect to the symplectic form (3.3):

{J}u Jl/} = Zﬁlm/t]na
{Rb JV} = Zfiuans
{Ri, Ry} = (du? —26H) Yy, (3.24)

as is expected from the same relations known for the original Taub-NUT metric
[4,5]. Thus we recognize that the Hamiltonian system (7*(R* — {0}), w, Hx)
admits the same symmetry as the Kepler problem does.

We proceed to discuss singular trajectories. The singularity of the Hamiltonian
vector field for Hx appears at r = —a/b if a/b < 0, as 1s known from (3.5)
with (3.15) and (3.17). We are to ask 1if trajectories reach the singular sphere
S = {x€R¥-{0}; r = —a/b > 0}. The conservation of energy

2 1 e .2
E - r lp]2+#(+u+di)
2(a + br) 2r(a + br)
implies that if p # 0 then r is not allowed to tend to —a/b. If the flow of Xu
should be regularized as r tends to —a/b, p must go to zero and the quadratic

polynomial | + ¢ + dr* must have a factor a + br, that is, the relation
b* —abc + a*d =0 (3.26)

must hold. If p — 0 along a trajectory, we see from the definition (3.6) that
|J| — |u| along the trajectory. Then, the conservation of the angular momentum

(3.25)
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implies that |J| = |u| along the trajectory. Since [J|? = |x x p|? + |¢|? one has
x x p = 0. Thus the trajectory reaching the singular sphere should be radial.
Therefore, we can pursue the trajectory in the two-dimensional phase space with
variables (r,p), p := |p|, using the energy conservation, which can be put in the
form

r’p? = QbE —du?)r* + (2aE — cu®)r — u*. (3.27)

The curve of this equation is symmetric with respect to the r-axis, so that the
Hamiltonian flow approaching the r-axis can be continued along the curve (3.27)
after the flow reaches the r-axis. In other words, a particle going radially to the
singular sphere S reaches S in a finite time, and follows the same trajectory
backward, just after reaching S. If 2bE — du? < 0, trajectories going outward
(in the case of r > —a/b) will have a turning point ry, at which the right-hand
side of (3.27) vanishes. Thus, the radial motion may also be considered as
periodic, if 2bE — du? < 0. We have regularized, in this way, singular flows
of the Hamiltonian vector field for Hg. This regularization, in turn, gives rise
to regularization of singular geodesic flows for the extended Taub-NUT metric
dsZ.

3.3. GEODESICS FOR THE EXTENDED TAUB-NUT METRIC

In the reduced system, we have shown that the bounded trajectories are all
periodic. However, this will not necessarily imply that all bounded geodesics
for ds are periodic as well. We are going to study bounded geodesics for dsz.
Getting back to the Lagrangian (3.1), we observe that the variable ¢ is also
a cyclic variable, and hence obtain a conserved quantity py = 8L/8¢, which
is expressed, on account of (3.2), as py, = f(ryrtsin?@¢ + ucosh. In the
Hamiltonian formalism, p, is conjugate to the infinitesimal generator X =
0/0¢; that is, 1(X)w = —dpy. On the other hand, we have already obtained
the conserved vector J. If we choose the z-axis in the direction of J, then for
X = 0/0¢, the infinitesimal generator of the rotation about the z-axis, eq. (3.8)
becomes 1 (X )w = —d|J|. Thus we conclude that

f(r)yrtsin?6¢ + ucosb = |J|. (3.28)

Further, we know already that trajectories lie on the cone defined by (3.20), the
half opening angle of which we denote by «g. This fact implies that the variable
#, the latitudinal angle, is constant during the motion,

6 =0, 6 = ay. (3.29)
Then, from (3.20) and (3.29), eq. (3.28) becomes
F(rir‘g = |J|. (3.30)
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Taking the conserved quantities ¢ and |J| into the Lagrangian L, which is also
equal to the conserved energy E, we obtain

2 2

A u
E=1 2, | .
2+ 77 T 2¢()
From (3.30) and (3.31), trajectories in R*—{0} should be determined. Introduc-
ing the variable u = 1/r and taking ¢ as the parameter describing trajectories,
we obtain a differential equation for trajectories,

|12 (du/dg)* = —|J)2u? + (2aE — cu®)u + 2bE — dy?, (3.32)

which will be integrated to give conic sections in R? — {0}, as is anticipated.

After finding trajectories, conic sections, we can determine geodesics by inte-
grating eq. (3.2) for . We are interested in closed trajectories, ellipses, and ask
if one can find closed geodesics for closed trajectories. Let 1, and u#, (4, < u,) be
two solutions to the quadratic equation obtained by setting the right-hand side
of (3.32) equal to zero. Then the increment of y after traversing a trajectory is
found to be given by

(3.31)

Uz

ulcu + d)

Ay, =2
v P [T ju/(u — uy) (uy — u)

i}

which is integrated to give

4 21y ( d(2aE~cu2)> (3.33)
YT VIRDE — du?] 22bE —dp2| )’ '

Note here that 2bE — du? < 0 for bounded trajectories. Now it turns out that
if 4, /4n is a rational number the geodesic is closed. The case of 4 = 0 is quite
easy. In this case, 4, = 0 and y = const., so that the closed trajectories can be
viewed as closed geodesics when lifted to R* — {0}.

4. The Riemann curvature tensor

In what follows, we will concentrate on the extended Taub-NUT metric dsg.
First we note that for » = ¢ = d = 0, the metric ds,z( is flat because of (2.13a).
Further, it is already known that the Taub-NUT metric is an Einstein metric
[10]. Hence we wish to ask to what extent the metric dsf( 1s extended from the
original Taub-NUT metric. A first question we are to ask is when the metric
ds is an Einstein metric. We can show the following.

Theorem 4.1. [n order that the extended Taub-NUT metric dsg given by (3.19) be
an Einstein metric, it is necessary and sufficient that the constants a, b, ¢ and d
are subject to the constraint (1.4). In addition, the Einstein extended Taub-NUT
metric is Ricci flat.
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Proof. From (2.10) it follows that dsg is Einstein, if and only if
A + A (N f ()2 + D(r)>—A(r)B(r) = 0,
AN ) VB2 -Br)f(r)"V2 4+ 2C(r)D(r) + A(r)B(r) = 0.

(4.1)
These equations are equivalent to
A+ A () f(r)"2 + D(r)2 - A(r)B(r) =0,
A(r)?=B(r): =B (r)f(r)~'2 £ 2C(r)D(r) + D(r)? = 0. (4.2)

On inserting (2.7) into (4.2), one has the following equations for f (r) and
g(r), along with F (r) := rf (r):

2rg(r)[F(r)F'(r) + rF(r)F"(r) = rF'(r)?]
+F(r)g(r)? = r*F(r)F'(r)g'(r) = 0, (4.3)
[rF'(r)g(r)]* = F(r)?[2r?g(r)g" (r) + 2rg(r)g'(r) — r’g'(r)*]

+r28'(r)g(r)F'(r)F(r) + F(r)g(r)?[3g(r) —4F (r)] = 0.
(4.4)
For the extended Taub-NUT metric, f (r) and g(r) are expressed as in (1.3),
or (3.15) and (3.17). Hence, on replacing f (r) and g (r) by those expressions,
eq. (4.3) gives rise to an identity in r,

(abc + a*d — 3b)r* + 2(2abd — b*c)r® = 0,
which, in turn, provides the equations for the constants a, b, ¢, d,
abc + a*d — 3b% = 0,
2abd — b*c = 0. (4.5)

These are equivalent to (1.4) because of ¢ # 0. The functions f (r) and g(r)
given by (1.3) with the conditions (1.4) are shown to satisfy also eq. (4.4).

We are further to show that dsg with the constraints (1.4) is also Ricci flat.
From (1.3) together with (1.4), the functions (2.7) are expressed as

A(r) = a+ 2br
"~ 2(a + brytar =+ br2)\2’
a
B = s o @ s o
Ciry = — a* + 4abr + 2b%r2
T 2a(a + br)(ar + br2)\/2’
D(r) = a (4.6)

2(a + br)(ar + br2)l/z”
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Then the Ricci tensor given by (2.10) can be shown, after a long and straight-
forward calculation, to vanish, R;; = 0. This completes the proof. O

We proceed to ask if the metric dsg has a self-dual Riemann curvature ten-
sor. Since the ' form an orthonormal basis, the volume element dv on the
generalized Taub-NUT space is expressed as

dv = o' Aw? A wP At (4.7)
and the star operator = is thereby defined to give rise to the formulae

(' Aw?) = 03 Aw?, «(w'Aw?) = w*Ao? s(w'Aw? = w’Ao’

, (4.8)
Therefore, in order for Q = (£]) given in (2.9) to be self-dual, *Q = Q, it is
necessary and sufficient that

A2+ AN f ()72 = D(r)[A(r) = B(r) ],

B(r)? + B'(r)f (r)"1% = 2D(r)[B(r) — A(")],
B(r)C(r) + C'(r f(r)7"2 = 2C(r)D(r) + A(r)* + D(r)?,
A(rD(r) + D'(r)f (r)="2

By inserting (2.7) together with (1.3) into the first equation of (4.9), we obtain
an identity in r,

D(r)? — A(r)B(r). (4.9)

I

2ab(l 4+ cr + drH)3? = (a + br)(ac + (bc + 2ad)r + 2bdr?),

from which it turns out that constants a, b, ¢, d should be subject to the constraint
(1.4). Conversely, if the condition (1.4) is satisfied, we have the relations

AP + A0 ()7 = 22 = DA - B,

BUY + B0 ()7 = — s = 2D () [B() - A1),
BNC() + CHS ()72 = — 20 2 200D + 407 + D
AD() + D' (1) f ()12 = _E(T%W = D(r)? — A B(r).

(4.10)
Therefore, (1.4) is also a sufficient condition for self-duality. The curvature
form £ is then expressed as

( o 911)
Q =E@) , (4.11)
= &
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where b
a
E(r) = ————, 4.12
(r) 5 Br)3 ( )
0 o' Aw? + w3 At
Q= ,
Wl Aw! + 0t Ao 0
W' AN + 0 A2 200A0! + 203 A 02
£y =

20 0! + 203 A0 WP A0+ @A !

The above discussion results in the following theorem.

Theorem 4.2. In order that the extended Taub-NUT metric ds} has a self-dual
Riemann curvature form, it is necessary and sufficient that the constants a, b, ¢, d
satisfy the constraint (1.4).

From theorems 4.1 and 4.2 it turns out that for the extended Taub-NUT
metric dsZ the following two are equivalent: (1) dsZ has a self-dual Riemann
curvature form, and (2) ds]z( is an Einstein metric.

Remarks. As was mentioned in the introduction, if a, b, ¢, d satisfy the constraint
(1.4), the extended Taub—NUT metric coincides with the original Taub-NUT
metric up to a constant factor on setting 4m = a/b. In this case, we come to the
self-duality of the Taub—NUT metric [10]. As is easily shown, if xQ = 2, one
has R;; = 0. Thus we verify the latter part of theorem 4.1 again. Further, since
condition (3.26) is satisfied by (1.4), singular geodesics for the Taub-NUT
metric can be regularized.

5. The Weyl curvature tensor

In this section, we are to ask if the Weyl curvature tensor of the extended
Taub-NUT metric is self-dual, in order to know to what extent the extended
Taub-NUT metric is actually extended.

For the Weyl curvature tensor given by (2.16), we define a two-form by

1 _
W,»jzizquwk/\w’, (5.1)
ke

which turns out to be expressed as
Wij = Qi — }(Rii + Rjj)o' Ao’ + LRo' A 0/, (5.2)
where we have set Q} = £;; because of the identification of the tangent bundle

with the cotangent bundle by use of the Riemannian metric. Then, at every point
of the manifold, the Weyl tensor is thought of as a linear transformation of the
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space of two-forms A% := A2T*(R* - {0}). One can break up 4?2 into self-dual
and anti-self-dual parts with respect to the star operator *, 4> = A, & A_, where
A, and A_ are eigenspaces corresponding to the eigenvalues of the », +1 and
—1, respectively. According to this decomposition, a basis of 4% can be taken to
be

w' AN + 3Aot, olAed+ otAwE olAot+ iAo’

W' AN — 3Nt o'AP-wtred w'Aet-oiAod (5.3)
where the two-forms in the first row are in 4, and those in the second row in

A_. With respect to the above basis, the representation matrix W of the linear
transformation defined by (5.1) is known to take the block diagonal form

w+ 0
W = , (5.4)
0 W=

where W+ and W~ are 3 x 3 matrices representing the induced linear transfor-
mation of the invariant subspaces A, and A_, respectively.
To express the matrices W+ and W, we introduce the notation

hy = A2+ A f ()72, hy = D(r)[A(r) = B(r)],

hy = B(r)* + B'(r) f(r)~ "2, ha = B(r)C(r) + C'(r)f ()13,
hs = 2C(r)D(r) + A(r)? + D(r)?,  hg = A(r)D(r) + D' (r) f (r)"'/3,
hy = A(r)B(r) - D(r). (5.5)

These functions are coefficients appearing in the curvature forms given by (2.9),
and subject to the relations

hy = —hg, hy = —2h,. (5.6)
Then, after a calculation, we find that
W+ = %(/’ll + 6hy — hy — hs + hy) Wy,

W- = —é—(/’ll — 6}'12 ”h3 "hS + /’l7)W0, (57)

-1 0
Woz( . )
0 2

Thus we obtain the following proposition.

where

Proposition 5.1. A generalized Taub-NUT metric ds3 is conformally self-dual or
conformally anti-self-dual, i.e., W~ = 0 or W+ = 0, according to whether

/’ll —6h2—/’23—/’15 +/’l7 =0, (5.8a)
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or
hl +6h2—h3—h5+h7 = 0. (5.8b)

Before going into the self-duality question, we reconsider the conformal flat-
ness question for the generalized Taub—-NUT metric. By definition, the general-
ized Taub-NUT metric is conformally flat, if and only if W+ = W~ = 0. Thus
the metric dsé is conformally flat, if and only if i, = Oand 4, —h3—hs+ h; = 0.
From 4, = 0, one has

d 5 _d
Elog(r f(r)) = alog g(r),

which is integrated to give r2f (r) = cog(r) with a constant ¢;. It then follows
from (2.7) that A(r) = B(r). Thus one has #; = h; from (5.5), so that the re-
maining condition for conformal flatness reduces to 25 = #;. Hence, from (5.5)
with 72 f (r) = cog (r) one finds that ¢y = 1. Thus we come to the necessary and
sufficient condition r2f (r) = g(r) for conformal flatness, as in proprosition
2.2.

In the remainder of this section, we concentrate on the conformal (anti-)self-
duality of the extended Taub—-NUT metric given by (1.3). The condition (5.8a)
is put in the form

A'(r)f(r)=Y2 - 6[A(r) — B(r)]1D(r) — B(r)?
—B'(r)f(r) V2 -2C(r)D(r) —=2D(r)? + A(r)B(r) = 0. (5.9)

After a straightforward and lengthy calculation with (3.15) and (3.17), one
obtains an identity in r,

(c+2dr)2V1 +cr+dr2—-2—cr) =0. (5.10)

In a similar manner, the conformal anti-self-duality condition (5.8b) can be
brought into the form

(c+2dr)2V1 +cr+dr2+2+cr) =0. (5.11)

Equations (5.10) and (5.11) give rise to an equation for the constants a, b, ¢, d,
respectively. Therefore, if 2 + ¢r > 0, eq. (5.10) results in

c=d=0, (5.12)
and/or
d = c/a. (5.13)

In the case of (5.12), we obtain the relation g(r) = r?f (r), so that the metric
dsg becomes conformally flat from proposition 2.2. In the case of (5.13), we are
left with the following theorem.
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Theorem 5.2. In order that the extended Taub-NUT metric dsi with 2 + cr >
0 have a self-dual Weyl tensor or be conformally self-dual, it is necessary and
sufficient that the constants ¢ and d satisfy (5.13). In this case, one has

C
T 2(a + br)(1 + cr/2)? "o,

In the case of 2 + cr > 0, eq. (5.11) results in (5.12).

+

W= = 0. (5.14)

If it happens that 2 + ¢r < 0, we have to consider the anti-self-duality condi-
tion. Then the same relations as (5.12) and (5.13) result from (5.11). Thus, in
contrast to the above theorem, we have the following.

Theorem 5.3. The extended Taub-NUT metric with 2 4+ cr <0 (i.e., r > 2/lc|)
has an anti-self-dual Weyl tensor or is conformally anti-self-dual, if and only if
the constants ¢ and d satisfy (5.13). In this case, one has
¢
= Wh.
2(a + bry(1 + cr/2)?  °

In the case of 2 + cr < 0, the conformal self-duality condition (5.8a) or (5.10)
results in (5.12). That is, the metric dsg becomes conformally flat.

Wt =0, W= (5.15)

Remark. Since the constraints (1.4) satisfy the condition (5.13), theorems 5.2
and 5.3 show that the Taub-NUT metric is conformally self-dual if 2 4+ ¢r > 0,
i.e., (a+br)/a > 0and conformally anti-self-dual if 24+ cr < O,1.e., (a+br)/a <
0. Note also that in this case the factor in (5.14) or (5.15) becomes ab/ (a + br)3,
as 1s expected from (4.11) and (4.12).
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