
jOURNAL OF
Journal of GeometryandPhysics 12 (1993) 55—75 GEOMETRYAr~D
North-Holland PHYSICS

OnextendedTaub—NUTmetrics

ToshihiroIwal a andNoriaki Katayamab
a DepartmentofAppliedMathematicsand Physics,Kyoto University, Kyoto 606-01, Japan

b Departmentof Systemsand Control Engineering,OsakaPrefectural Collegeof Technology,

Neyagawa,Osaka572, Japan

Received10 November1992

Much attentionhasbeenpaidto the (Euclidean)Taub—NUT metric becausethe geodesic
on this spacedescribesapproximatelythe motion of two well-separatedinteractingmono-
poles.It is alsowell knownthat the Taub—NUT metric admits a Kepler-type symmetry.In
this paper,theTaub—NUTmetric is extendedso that it still admitsa Kepler-typesymmetry.
The geodesicsof this metric will be investigated.In particular, regularizationof singular
geodesicsis studiedby useof a method from dynamicalsystems.Further,somegeometrical
propertiesof the extendedTaub—NUT metric are clearedup. In orderthat the extended
Taub—NUTmetric eitherhasa self-dualRiemanncurvaturetensoror is anEinstein metric,
it is necessaryandsufficient that it coincideswith the original Taub—NUT metric up to a
constantfactor. Furthermore,a classof extendedTaub—NUT metricswhich havea self-dual
Weyl curvaturetensoris found. This classof metrics,of course,includesthe Taub—NUT
metric.
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1. Introduction

Much attentionhasbeenpaid to the EuclideanTaub—NUT metric, since in
the long-distancelimit the relativemotion of two monopolesis describedap-
proximatelyby its geodesics[1,2]. Fromthe symmetryviewpoint, ofparticular
interestis the fact thatthe geodesicmotion admitsa Kepler-typesymmetry,if a
cyclic variableis gottenrid of [3,4]. L.Gy. FehérandP.A. Horváthyinvestigated
the samesymmetry [51,andsoonextendedthe symmetryto the o(4, 2) dynam-
ical symmetrywell knownfor the Keplerproblem, in a paperco-authoredwith
B. Cordani [6]. Thoseauthorspresenteda generalframeworkfor understand-
ing Kepler-typesymmetries[71.Seealsoref. [8] for a reviewof the dynamical
symmetryof monopolescattering.

A generalizationof the EuclideanTaub—NUTmetric is to bediscussedin the
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form

ds~= f(r)(dr2 + r2(d02 + sin2Odç~2))+ g(r)(d~+ cosOdç~)2, (1.1)

where ~ r > 0, is the radial coordinateof 7t~— {0} and the angle variables
(O,c~,Vj)(0< 0 < it, 0 < ç5 < 2m, 0< yí < 4m) parametrizethe unit three-
sphereS3,andf (r) andg (r) arearbitraryfunctionsin r. 1ff (r) andg (r) are

takento be

f(r) = 1 + ~, g(r) = 1 ±4rn/r’ (1.2)

respectively,the metric ds~becomesthe EuclideanTaub—NUT metric with

in = —1/2. For in > 0, the metric (1.1) with (1.2) is just the spacepart of
the metric of the celebratedKaluza—Kleinmonopoleof GrossandPerryandof
Sorkin [9]. In thisarticle, by theTaub—NUT metricsimply themetric (1.1) with
(1.2) is meant.Interestwill centeron thosemetricsds~that aregeneralizedso

that they may admit the sameKepler-typesymmetryas theTaub—NUT metric
doeswhenthe cyclic variable jj~is gotten rid of. In this paper,thosemetricswill
be referredto as the extendedTaub—NUT metricsanddenotedby ds~because
of the Kepler-typesymmetry.It will be shownthat for ds

1~the functions f(r)
andg(r) take, respectively,the form

a ar + hr
2

f(r) = + h, g(r) = 1 + cr + dr2~ (1.3)
wherea, b, c,d areconstants.If the constantsaresubjectto the constraints

c = 2b/a, d = (h/a)2, (1.4)

the extendedmetric coincides,up to a constantfactor, with the original Taub—
NUT metric on setting4m = a/b.

Thispaperhastwo aims.Oneis to derivetheextendedTaub—NUTmetricds~
andto study its geodesicsfrom the viewpoint of dynamicalsystems.The other
aim is to investigategeometricalpropertiesof the extendedTaub—NUT metric
ds~,say,to askwhenit is Einstein,whenit hasa self-dualRiemanncurvature
form, andwhen it has a self-dualWeyl curvaturetensor.Thesequestionsare
raisedin order to observeto what extentthe metricds~is actuallyextended.In
fact, the Taub—NUT metric has receivedinterestas a self-dualEinsteinmetric
[10].

Theorganizationofthis articleis asfollows: Section2 is concernedwith setting
up the generalizedTaub—NUT metric ds~andcontainsa few observationson
the metric. In fact, the componentsof the curvatureforms are written outby use
of an orthonormalbasistogetherwith the functionsf(r) andg(r) includedin
the metric.Thecomponentsof the Ricci tensorarewritten outas well in termsof
f(r) andg(r). By usingthe expressionsobtained,someobservationsaremade
on ds~the functionsf(r) andg(r) aredeterminedso that the metricds~may
beflat, conformally flat, or Einsteinin additionto beingconformally flat.
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Section 3 containsthe derivationof extendedTaub—NUT metrics from the
viewpoint of dynamicalsystems.The generalizedTaub—NUT metric ds~de-
terminesa geodesicflow systemon the cotangentbundleT* (l~~— {0}), which
systemcan be reducedto a systemon T* (R3 — {0}) by getting rid of a cyclic
variable.The reducedsystemadmitsmanifestrotationalinvariance,andhence
hasa conservedangularmomentum.With the assumptionof the existenceof an
additionalconservedvector,a Runge—Lenz-typevector, for the reducedsystem,
the functionsf (r) andg(r) areto be determinedto bring aboutthe extended
Taub—NUT metric ds~.Trajectoriesof the reducedsystemfrom ds~arethen
discussedby use of the conservationof the angularmomentumandthe Runge—
Lenzvector. It turns out that generictrajectoriesareconicsections.However,
sincethe metric could havea singularity, singulartrajectoriescould possibly
occur. By usingthe conservationlaw, regularizationof singulartrajectoriesis
performed,which, in turn, becomesregularizationof singulargeodesicsfor ds~
as it is. On the basisof trajectoriesanalyzedin the reducedsystem,the geodesic
equationfor ds~is dealtwith to look for closedgeodesics.

Section 4 is concernedwith the Riemanncurvaturetensorfor ds~.It will be
shownthat the constraints(1.4) arenecessaryandsufficientconditionsfor the
extendedTaub—NUT metric ds~either to be an Einstein metric or to havea
self-dual Riemanncurvaturetensor.As was anticipatedin the sentenceabout
(1 .4), the metric ds~in thiscasecoincideswith the Taub—NUTmetric up to a
constantfactor. Hencetheself-dualityof theTaub—NUTmetric [10] is verified
as a byproduct.

Section 5 containstheinvestigationof anecessaryandsufficientconditionfor
the metricth~to havea self-dualWeyl tensor,or to beconformallyself-dual.It
will turn out thateither the metric ds~with 2 + cr > 0 is conformallyself-dual
or the metric ds~with 2 + cr < 0 is conformallyanti-self-dual,if and only if
d = c2/4.This classof metricscontains,of course,the classof thosestudiedin
section4.

In the presentpaper,the Kepler-typesymmetry is aguiding principle of the
generalizationof the Taub—NUTmetric.Becauseof the conservedangularmo-
mentumandRunge—Lenzvectors,all the boundedtrajectoriesfor the reduced
systemareclosed.Onecanthentakeanotherapproachto the generalizationof
the Taub—NUT metric from the viewpoint of closed trajectories.In fact, one
mayaskwhenall the boundedtrajectoriesfor the reducedsystemareclosed.It
will be shownin anotherpaperthat thereare two typesof functionsf andg
andthereforetwo typesof suchmetrics.Oneis the extendedTaub—NUTmetric
ds~mentionedabove,whichhasa resemblanceto the Keplerproblemin a way.
The otheris determinedby the functions

f(r) = ar2 + b, g(r) = ar+br (1.5)
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where a,b, c,d are constants.In contrastwith the metric ds~,thesemetrics
will be called harmonicoscillator type metricsfor the reasonthat the reduced

systemhasa markedresemblanceto theharmonicoscillator.Detailswill appear
elsewhere[11].

2. Settingup the structureequations

In this section,we are to treat generalizedTaub—NUT metrics andto write
out their Riemanncurvaturetensor.To startwith, we note that the curvilinear
coordinates(r, 0, -/, ~,u)are related to the Cartesiancoordinates(y’,j’2,y3,y4)
in l~by

= ~cos~(~i + ç~)cos~0, ~,2= ~/~sin~(yi + (/))cOS~0,

= ~ y4 = ~ (2.1)

The rangesof variablesare the sameas statedin the introduction. The gener-
alized Taub—NUT metric we are to treat, ds~,is expressedas in (1.1). It is
convenientfor us to introduceorthonormalone-formsw1 definedby

w’ = f(r)112dr,

= r f (r)’72 (— sin yi dO + cos~usin0 dçL),

w3=rf(r)”2(coswd0+sin~sin0dc~),

= g(r)’12(d~’+ cosOdq~). (2.2)

Clearly,onehasds~=

The settingof our generalizedTaub—NUT metricis in keepingwith thebundle

structureof the space — {0}: U(l) — — {0} —p It~— {0}. In fact, theaction
of the structuregroupU (1) is expressedas y —~ ~,u+ t with the othervariables
fixed, andhasthe infinitesimalgeneratorO/Th,ii. A dual form d~+ cos0dç5to

8/3w is the connectionform for the naturalconnectiondefinedon thatbundle.
w4 is a multiple of the connectionform, a vertical form, andtheforms w1,w2,
andw3 arehorizontalto the U (1) action. In a dual manner,onecan introduce
orthonormalvectorfields e

1 dual to w
1,

1 3
e

1 = f(r)’/
20r’

1 / . 3 0 0
e

2 = rf (r) 1/2 ~ ~1fl w ~ + cosI/I CSC 0 ~ — cosw cot0 ~

1 / 3 . 3 . 3= rf(r)’/
2 ~cosw~-~ + sin~csc0~ sin~cotO~~~

1 3
= g(r)’/2 ~ (2.3)
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The vectorfields e1,e2,e3 andthe e4 arehorizontalandvertical, respectively,
with respectto the naturalconnectionstatedabove.Further,we noticethat the
coordinates(r, 0,q~),whenprojectedon the basespace — {0}, can be looked
upon as sphericalcoordinates.

2.1. THE CONNECTION AND CURVATURE FORMS

We are now ready to considerthe Levi-Civita connectionandits curvature
forms.The covariantderivativeof the framee is put in the form

dVej = ~w~e1, (2.4)

wherew~areone-formscalledconnectionformswith respectto the Levi-Civita
connection.Oneof Cartan’sstructureequationsis thenexpressedas

dw’+~w’,Aw~=0. (2.5)

A lengthy calculationprovidesthe connectionforms as follows:

0 —A(r)w~—A(r)w
3 —B(r)w4

A(r)w2 0 —C(r)w4 —D(r)w3
(wi) = , (2.6)

A(r)w3 C(r)w4 0 D(r)w2

B(r)w4 D(r)w3 —D(r)w2 0

wherethe functionsA (r) to D (r) aregiven by

A’ ) — d(r2f(r))/dr— 2r2f(r)f(r)’/2’

B r~ — dg(r)/dr
— 2g(r)f(r)’/2’

C ) — g(r)—2r2f(r)(r — 2r2f(r)g(r)’/2’

D(r) = 2 (2.7)

2r f(r)

The otherstructureequationof Cartangives thecurvatureforms .Q,’,

= dw~+ ~ (2.8)
k

A straightforwardcalculationresultsin

= [A(r)2 + A’(r)f(r)’12]w’ A

+D(r)[A(r) —B(r)]w3Aw4,
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= [A(r)2 + .~1’(r)f(r)~/2]w1A
.‘ 4-D(r) [A(r) - B(r)]w A w.

= [B(r)2 + B’(r)f(ry~121w’ A

—2D(r) [A (r) — B(r) ]w2 A

= [B(r)C(r) + C’(r)f(r)112]w’ A (~4

+ [2C(r)D(r) + 4(,.)2 + D(r)2]w2 A (~3,

= [A(r)D(r) + D’(r)f(r)~/2]w’ A (~)3

+ [A (r)B(r) — D(r)2]w2 A (‘i4,

= — [A (r)D(r) + D’ (r)f (,.)_1/2 ]w’ A w2

+ [A (r)B(r) — D(r)2 ]w3 A w4, (2.9)

wherethe primedenotesthe derivativewith respectto r. andthe othercompo-
nentsareknownfrom the anti-symmetryQ/ + = 0. The Ricmanncurvature
tensorhasthe componentsR~k,,:= Q/(ek,e,). As it would take a pageto list

the explicit form of R~kt,we proceed,instead,to calculatethe Ricci tensorwith
componentsR

11 andthe scalarcurvatureR. Theyaregiven as follows:

= —2 [A (r)
2 + .1’ (r)f (r)~/2] — [B(r)2 + B’ (r)f (r)~/2]

= —2.1 (r)2 — .1’ (r)f (r)~72— 2C(r)D(r) — A (r)B (r),

R
33 = —2A (r)

2 — A’(r)f (,.)~1/2— 2C(r)D(r) — A (r)B (r),

R
44 = —B(r)

2 — B’(r)f(r)~”2 + 2D(r)2 — 2A(r)B(r),

R
11 = 0 fori’~ j, (2.10)

R = —6A (,.)2 — 4A’ (r)f(r)~/
2 — 2B(r)2 — 2B’ (r)f (,.)_I/2

—4C(r)D(r) — 4A(r)B(r) + 2D(r)2. (2.11)

2.2. EASY OBSERVATIONSON THE GENERALIZED TAUB-NUT METRIC

We heremakea fewobservationson thegeneralizedTaub—NUTmetric, using

the expressionobtainedin the last subsection.First we give the expressionof
the standardflat metric ds~,

ds~=

= ~[d,.2 + r2(d02 + sin20dçY + (dw + cosOdc5)2)I. (2.12)

We start with the following proposition.

Proposition 2.1. In order that thegeneralizedTaub—NUTmetricds~beflat, it is
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necessaryandsufficientthat

f(r) = ~, g(r) = r2f(r) = rtr, rt >0: const., (2.l3a)

or

f(r) = ~, g(r) = r2f(r) = ~, ct >0: const. (2.13b)

Proof The condition R~kF= 0 yields the following simultaneousdifferential
andfunctionalequationsfor f (r) and g (r), after a long calculationalongwith
(2.9):

~(r2f(r)) = ±rf(r), g(r) = r2f(r). (2.14)

Theseareeasilysolvedto give (2.13a)and (2.13b),as desired.

It is to be noted that the metric corresponding to (2.13a) is aconstantmultiple
ofthestandardflat metric (2.12). Ontheotherhand,themetriccorrespondingto
(2.l3b) canbe transformedinto the standardflat metricthroughthe coordinate
transformationR

0 = 2(Q/r)’
12, whereR

0 is theusualradial variablein B~.
Further,comparisonof thegeneralizedTaub—NUTmetric (1.1) with the stan-

dard flat metric (2.12) providesthe following proposition.

Proposition 2.2. The generalizedTaub—NUTmetric ds~is conformallyflat, if
and only if

g(r) = r
2f(r). (2.15)

This propositioncanalsobeprovedby showingthat the conformalcurvature
tensorwith componentsC~kldefinedby

= R~kt— ~(ôk’?ie —5jRjk + ô/R,k_ô~R,~)+ ~R(ó~
1, ô~

5Jk)(2.16)

vanishesif andonly if g(r) = r2f(r). We will comebackto this questionin
section 5.

In addition,wecanprovethefollowing theoremunderthe conditionthatds~
is conformallyflat.

Theorem 2.3. In order that the conformallyflat generalizedTaub—NUTmetric
bean Einsteinmetric, it is necessaryandsufficient that

f(r) — r(fl +yr)2’ g(r) = r2f(r), Ct> 0, fi, y: consts. (2.17)

Proof Beforeprovingthis, we haveto remarkthat (2.17) reducesto (2.13a) or
(2.13b),accordingto whethery or fi is taken to bezero.With the assumption
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g(r) = r2f(r), the functions (2.7) are put in the simpler form

A( ) — B( ) — d(r2f(r))/drr — r — 2r2f(r)f(r)’/2’

C(r) = —D(r) = — 1 (2.18)

2rf(r)’/2
Thenthe Ricci tensorgivenin (2.10) turns into

R
11 = —3(A(r)

2 + A’(r)f(r)’/2),

R
22 = R33 = R44 = —3A(r)

2 — A’(r)f(r)1/2 + 2D(r)2. (2.19)

From this it follows that the conditionfor the metric underconsiderationto be

an Einsteinmetric, R,
1 = ~Ró11,resultsin the condition

A’ (r) = —D(r)
2f (r) 1/2 (2.20)

From (2.18) and (2.20),we obtainthe differentialequationfor f(r),

3f(r)2 + 2rf(r)f’(r) + 3r2 (f’(r) )2 — 2r2f(r)f”(r) = 0. (2.21)

Settingh(r) := logf(r), one finds that the derivativeh’(r) is subjectto the
Riccati equation

2d
2h (dh’\2 2dh ~

dr2 ~.. dr) r dr r2 =

which is easily integrated, and eventually one obtains (2.17), a solution to
(2.21).Conversely,from (2.17) to (2.19),onehasimmediatelythe equation

R,
1 = (2.22)

This completesthe proof.

Beforeendingthis section,weshouldpointout that theEinsteinmetricderived
above is, furthermore,of constantcurvature. In fact, as is well known, if a
RiemannianspaceM is conformally flat and Einstein (dim M > 3), it is of

constant curvature. In our case, the curvaturetensor is shown to satisfy the
following equation:

DJ flYixix xix
= — “~“k

t”t — t~tCt

3. ExtendedTaub—NUT metrics

In this section,we are to determinethe functions 1(r) andg(r) containedin
ds~from theviewpoint of dynamicalsystems.Tostartwith,weconsidergeodesic
flows of the generalizedTaub—NUTmetric ds~,which hasthe LagrangianL on
the tangentbundleT(l~4—

L = ~f(r)[~2 + r2(02 + sin20~2)]+ ~g(r)(~ + cos0ç~)2, (3.1)
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where (i~,0, q~,y~,r, 0, ~, w) stand for coordinatesin the tangent bundle. The
conservedquantity for the cyclic,variable w is given by

= g(r)(y~+ cos0çb). (3.2)

Under this condition, the dynamical system for the geodesic flow on T(EI~4— {0})
can be reduced to a systemon T(EI~3— {0}). This process is in accordance with
the bundle structure 11” — {0} —~ — {0}, since the structure group action is
expressed as w —~ w + t with the other variablesfixed.

In the Hamiltonian formalism, the reduced Hamiltonian system can be de-
scribedon the reducedphasespaceT* (ER3 — {0}) togetherwith the symplectic
form w andthereducedHamiltonianfunction,whicharegiven, respectively,by

~ (3.3)

A=I

1 2
H=

2f(r)~~~ 2g(r)’ (3.4)

wherex = (x
1) and p = (pa) are vectorsin the factor spaces — {0} and

~, respectively,of the reducedphasespaceT* (ER3 — {0}) ~ (FR~ — {0}) x

ande,~,,denotesthe Levi-Civita symbolwith indicesrangingover 1,2,3.See,for
example,ref. [12] for the reduction.As is seenin (3.3), the reducedsymplectic
form w containsthe two-form representinga monopolefield with strength/.t.

The equationof motion is determinedthrough the Hamiltonian vector field
XH definedby i(XH)w = —dH, where i denotesthe interior product. After a
calculation,we find the Hamiltonianvectorfield XH, andtherebythe equation
of motion in the form

dx — p
dt —

dp f’(r)~p~2 2 g’(r) _____

dt = 2rf(r)2 X + ~ 2rg(r)2X — r~f(r)~xx. (3.5)

Owing to the obvioussphericalsymmetry,we can easily showthat the angular
momentumvector

J = x xp + (jt/r)x (3.6)

is a conservedvector. In fact, for an arbitrary infinitesimalrotation

X=(~xx).0/8x+(~xp).3/0p, ~ (3.7)

onehas
i(X)w = —~5.dJ. (3.8)
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3.1. THE DERIVATION OF EXTENDED TAUB-NUT METRICS

We assumeherethat in addition to the angularmomentumvectorthereexists

a conservedvectorR of the following form with an unknownconstant~:

R = p x J — (K/r)x. (3.9)

This is an analog of the Runge—Lenzvectorwell known for the Keplerproblem.
It is also well known that the reducedsystemfrom the geodesicflow system
for the Taub—NUT metric admitsa Kepler-typesymmetry [3—6].We wish to
determinethe functionsf(r) andg(r) containedin the Hamiltonian (3.4) on
the assumptionof a conservedvectorR, andtherebyto find an extendedTaub—
NUT metric.Now, from (3.5) it follows that the vectorR is a conservedvector,
i.e., dR/dl = 0, if andonly if

— r2f’(r) 2
7r

2g’(r)f (r) ~ (3 10)

K — 2f(r) ~ 2g(r)2 + r’
which shouldgive riseto differential equationsfor f(r) andg(r).

Since (3.10) is an identity in rand [p~,the coefficientof [p~2mustvanish,so
that f’(r) = 0. We thushave

f(r) = b = const.~0. (3.11)

Then,eq. (3.10) turns into a differential equationfor g(r),

g’(r) + 2(Kr—/L2) = 0

g(r)2 u2hr3

which is easily integratedto give

br2
g(r) = , d:const., (3.12)

1 + cr + dr2

wherec = —2K/JL2.Thus f(r) and g(r) aredeterminedin a simplemanner.It
is to benotedthat alongwith the functionsthusobtainedthe Hamiltoniantakes
the form

H = ~2 + + +

which is an extension of the MIC—Zwanziger Hamiltonian [12—14].
We cantakeanotherway to obtainthe conservedvector (3.9). Relaxingthe

conditionof conservation,we maythink of (3.9) asaconservedvectorunderthe
conditionthatthetotalenergyis conserved.Settingthevalueof theHamiltonian
H toE, wecan rewrite (3.10) in the form

K = —r2.f’(r)E + ~ + ~2r2[g(r)f’(r) —.f(r)g’(r)] (3.13)

r 2g(r)

In order that the right-handsideof (3.13) is constantin i~.the coefficient of E
mustbe constant.Therefore,one canset

—r2f’(r) = a, a: const., (3.14)
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which is easilyintegratedto give

f(r) =~a/r + b, b:const. (3.15)

Then, eq. (3.13) comes out to be a differential equation for g(r),

= d(a/r+b~ (3.16)

rj dr\ g ,j

which is solved by

ar + hr2g(r) = , d:const., (3.17)
1 + cr + dr2

where c = 2(aE — ,c)/,.t2. In this case, the Runge—Lenzvectortakesthe form

R = p x J — ,cx/r, with K = aE — ~c~u2, (3.18)

from which wefind that the vectorR is in fact conserved whenE is a constant. It
is to be noted that if a = 0 eqs. (3.15) and (3.17) reduce to (3.11) and (3.12),
respectively. The above discussion results in the following theorem.

Theorem 3.1. Assumethat the reducedHamiltonian systemfrom the geodesic
flow systemfor a generalizedTaub—NUTmetric ds~has a conservedRunge—
Lenzvectoroftheform (3.9). Thends~becomestheextendedTaub—NUTmetric
th~givenby (1.1) with (1.3),

ds~=a+br[d2 2(d02 •20d~2)]
1~0~2(dw+cosOd~)2.

(3.19)

If ab > 0 and c
2 — 4d < 0 ore > 0, d > 0, no singularityof the metricappears

in ER4 — {0}. However, if ab < 0, amanifestsingularity appears at r = —a/b.
Singular geodesics approaching r = —a/bwill be discussedlater.

3.2. TRAJECTORIESOF THE REDUCED SYSTEM

Wedenote by HK the Hamiltonian (3.4) with f(r) and g(r) given by (3.15)
and (3.17), respectively. For the Hamiltonian system (TX (ER3 — {0}),W,HK)

the existenceof the Runge—Lenzvector in addition to the angularmomentum
vectorhasa geometricconsequenceof intereston trajectoriesin thebasespace
ER3 — {0}. The discussionrunsparallelto the caseof theTaub—NUTmetric [8].
As is easilyseenfrom (3.6), the innerproductof J with x/r is given by

(3.20)

which means that trajectories lie on a conewith axis I. We assumefor a while
that

1u ~ 0. Setting a conservedvector

N=UR+KJ (3.21)
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with K given in (3.18),we have

N•x = i~(IJ~2—j’2), (3.22)

which impliesthat trajectorieslie alsoin the planeperpendicularto N. Hence,it

turns out thattrajectoriesareconicsections.The form of thetrajectorydepends
on the inclination of the plane.Since

N.J =

= [
1t

2(2hE— dj~2)+ K2] ((J12 — ji2), (3.23)

comparison of the plane’sinclinationanglewith thecone’sopeningangleshows
that the trajectoriesareellipses,parabolae,or hyperbolae,accordingto whether
2bE — dJL2 is negative, zero, or positive, as long as K ~ 0 and J~~ j~. If
K = 0 and IJ~ ~ ~ the trajectoriesare all hyperbolae because of N. J = 0. If

JI = j~, the cone collapses to a line andno conic sectionsappear.This caseis
to be discussed below.

If j.t = 0, the cone becomesa plane perpendicularto J. We are then left
with the samesettingas the Kepler problem.Hence,trajectoriesareexpressed

asconic sectionsif J ~ 0, as is well known.
Wepoint out here that the integrals J and R satisfy the following Poisson

bracketrelationswith respectto the symplecticform (3.3):

{~1A,J~}= ~~Av,jJ,
1.

{R~,J~}=

{RA, R,1} = (dj~
2— 2bH) ~ (3.24)

as is expected from the samerelationsknownfor theoriginal Taub—NUT metric
[4,5]. Thus we recognizethat the Hamiltonian system (T*(ER4 — {0}),w,HK)
admits the same symmetry as the Keplerproblemdoes.

We proceedto discusssingulartrajectories.The singularityof theHamiltonian
vectorfield for HK appearsat r = —a/h if a/b < 0, as is known from (3.5)
with (3.15) and (3.17). We areto askif trajectoriesreachthe singularsphere
S = {x e ER3 — {0}; r = —a/b > 0}. The conservationof energy

r i 2 ji2(l+cr+dr2) (325)

— 2(a+hr)W + 2r(a+hr)

implies that if p ~ 0 then r is not allowed to tend to —a/b. If the flow of XH

shouldbe regularizedas r tendsto —a/b,p mustgo to zero andthe quadratic
polynomial 1 + cr + dr2 musthavea factor a + br, that is, the relation

h2 — abc + a2d = 0 (3.26)

must hold. If p — 0 alonga trajectory,we see from the definition (3.6) that

—* ~ alongthetrajectory.Then, theconservationof the angularmomentum
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implies that J[ = ~ujalongthe trajectory. Since J[2 = jx xpj2 + Lu12, onehas
x x p = 0. Thus the trajectory reaching the singular sphere should be radial.
Therefore, we can pursue the trajectory in the two-dimensional phase space with
variables (r, p), p : = [p , using the energy conservation, which can be put in the
form

r2p2 = (2bE—djz2)r2+ (2aE—c~2)r—~i2. (3.27)

The curve of this equation is symmetric with respect to the r-axis, so that the
Hamiltonianflow approaching the r-axis can be continued along the curve (3.27)
after the flow reaches the r-axis. In other words, a particle going radially to the
singular sphere S reaches S in a finite time, and follows the same trajectory
backward, just after reaching S. If 2bE — d

1i
2 < 0, trajectories going outward

(in the case of r> —a/b) will have a turning point rm at which the right-hand
side of (3.27) vanishes. Thus, the radial motion may also be consideredas
periodic, if 2bE — d~i2< 0. Wehave regularized,in this way, singular flows
of the Hamiltonianvectorfield for HK. This regularization,in turn, gives rise
to regularization of singular geodesic flows for the extended Taub—NUTmetric
ds~.

3.3. GEODESICS FOR THE EXTENDED TAUB-NUT METRIC

In the reduced system, we have shown that the bounded trajectoriesareall
periodic.However, this will not necessarilyimply that all bounded geodesics
for th~are periodic as well. We are going to studyboundedgeodesicsfor ds~.
Getting back to the Lagrangian(3.1), we observethat the variable~ is also
a cyclic variable,andhenceobtaina conservedquantityPçf~= 8L/8~,which
is expressed,on accountof (3.2), as Pçf~ = f(r)r2sin2O~ + jtcos0. In the
Hamiltonian formalism, p,

1, is conjugate to the infinitesimal generator X =

8/8q~that is, i (X)w = —dp~.On the other hand, we have alreadyobtained
the conserved vector J. If we choose the z-axis in the direction of J, then for
X = 8 /Oq~, the infinitesimal generator of the rotation aboutthez-axis,eq. (3.8)
becomesi(X)w = —dlJI. Thus we concludethat

f(r)r
2sin2Oq.~+ ~cos0 = J~. (3.28)

Further,weknowalreadythattrajectorieslie on the conedefinedby (3.20),the
halfopeningangleofwhich we denoteby rto. This fact impliesthat thevariable
0, the latitudinal angle, is constantduring the motion,

0 = 0, 0 = rt
0. (3.29)

Then, from (3.20) and (3.29), eq. (3.28) becomes

f(r)r
2~ = J~. (3.30)
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Taking the conserved quantities ~t and J[ into the Lagrangian L, which is also
equal to the conserved energy E, we obtain

IJ[2— 2 2E = ~f(r)~2 + 2r2f(r) + 2g(rY (3.31)

From (3.30)and(3.31), trajectoriesin ER3— {0} should be determined. Introduc-
ing the variable u = l/r and taking q~as the parameterdescribingtrajectories,
we obtain a differential equation for trajectories,

1J12 (du/d~)2= —IJI2u2 + (2aE — cji2)u + 2bE — dji2, (3.32)
which will be integrated to give conicsectionsin ER3 — {0}, as is anticipated.

After finding trajectories,conicsections,we candeterminegeodesicsby inte-
gratingeq. (3.2) for w. We areinterestedin closedtrajectories,ellipses,andask
if onecanfindclosedgeodesicsfor closedtrajectories.Let u

1 andu2 (u1 < u2) be
two solutionsto the quadraticequationobtainedby settingthe right-handside
of (3.32) equalto zero. Thenthe incrementof w after traversinga trajectoryis
foundto be given by

U2

2’ JL(cu+d)1 2 du,j J[u ~J(u-u1)(u2—u)
UI

which is integrated to give

— 2i~u ( d(2aE—cJL
2) (333)

W — ~~b~~djt2[ ~c+ 2~2bE—dj~2~

Note herethat 2bE — d~i2< 0 for boundedtrajectories.Now it turns out that
if A~/4mis a rational numberthe geodesicis closed.The caseof a = 0 is quite
easy.In this case,A~,= 0 and w = const.,so that the closed trajectories can be
viewedas closedgeodesicswhenlifted to ER4 — {0}.

4. The Riemanncurvature tensor

In what follows, we will concentrate on the extendedTaub—NUT metric ds~.
First we note that for b = c = d = 0, the metric ds~is flat because of (2.13a).
Further, it is already known that the Taub—NUT metric is an Einsteinmetric
[10]. Hence we wish to ask to what extent the metric ds~is extendedfrom the
original Taub—NUT metric.A first questionwe are to ask is when the metric
ds~is an Einsteinmetric. We canshow the following.

Theorem4.1. In order that theextendedTaub—NUTmetricds~givenby (3. 19) be
an Einstein metric, it/s necessaryandsufficientthat theconstantsa, b, c andd
are subjectto theconstraint(1.4). In addition, theEinsteinextendedTaub—NUT
metric is Ricci flat.
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Proof From (2.10) it follows that th~ is Einstein, if and only if

A(r)2 + A’(r)f(r)’12 + D(r)2 —A(r)B(r) = 0,

— B(r)2 — B’(r)f(rY~/2 + 2C(r)D(r) + A(r)B(r) = 0.
(4.1)

Theseequationsareequivalentto

A(r)2 + A’(r)f(r)’/2 + D(r)2 — A(r)B(r) = 0,

A(r)2 — B(r)2 — B’(r)f(r)’12 + 2C(r)D(r) + D(r)2 = 0. (4.2)

On inserting (2.7) into (4.2), one has the following equationsfor f (r) and
g(r), along with F(r) := r2f(r):

2rg(r)[F(r)F’(r) +rF(r)F”(r)—rF’(r)2]

+F(r)g(r)2—r2F(r)F’(r)g’(r) = 0, (4.3)

[rF’(r)g(r)]2—F(r)2[2r2g(r)g”(r) + 2rg(r)g’(r) —r2g’(r)2]

+r2g’(r)g(r)F’(r)F(r) +F(r)g(r)2[3g(r)—4F(r)] = 0.
(4.4)

For the extendedTaub—NUTmetric,f (r) andg (r) are expressed as in (1.3),
or (3.15) and (3.17). Hence, on replacingf(r) and g(r) by thoseexpressions,
eq. (4.3) gives rise to an identity in r,

(abc + a2d — 3b2)r2 + 2(2abd — b2c)r3 = 0,

which, in turn, provides the equationsfor the constantsa, b, c, d,

abc + a2d — 3b2 = 0,

2abd— b2c = 0. (4.5)

These are equivalentto (1.4) because of a ~ 0. The functions f(r) and g(r)
given by (1.3) with the conditions (1.4) are shown to satisfy also eq. (4.4).

We are further to showthatds~with the constraints(1.4) is also Ricci flat.
From (1.3) together with (1.4), the functions (2.7) are expressed as

A — a+2br(r) — 2(a+br)(ar+br2)’/2’

B(r) = 2(a + br)(ar + br2)1/2’

a2 + 4abr + 2b2r2
C(r) = 2a(a + br)(ar + br2)’/2’

D(r) = a (4.6)
2(a + br)(ar + br2)’!2
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Thenthe Ricci tensor given by (2.10) can be shown,after a long andstraight-
forwardcalculation,to vanish,R11 = 0. This completesthe proof.

We proceedto ask if the metric d4 hasa self-dual Riemanncurvatureten-
sor. Since the w

1 form an orthonormalbasis,the volume elementdv on the
generalizedTaub—NUTspaceis expressedas

dv = w’ Aw2Aw3Aw4, (4.7)

and the star operator * is therebydefinedto give rise to the formulae

*(w’Aw2)=w3Aw4, *(w1Aw3)=w4Aw2, *(w’Aw4)=w2Aw3.
(4.8)

Therefore,in order for Q = (Q/) given in (2.9) to be self-dual, *Q = Q, it is
necessaryandsufficient that

+ A’(r)f(r)’/2 = D(r) [A(r) - B(r) 1~

B(r)2 + B’(r)f(r)~’/2 = 2D(r)[B(r) — 4(r)],

B(r)C(r) + C’(r)f(r)’/2 = 2C(r)D(r) + 4(r)2 + D(r)2,

A(r)D(r) + D’(r)f(rY’/2 = D(r)2 — A (r)B(r). (4.9)

By inserting (2.7) togetherwith (1.3) into the first equationof (4.9),weobtain
an identity in i.,

2ab(l + cr + dr2)312 = (a + br)(ac + (be + 2ad)r + 2bdr2),

from which it turns out that constants a, b, c, d shouldbesubjectto theconstraint
(1.4). Conversely, if the condition (1.4) is satisfied,we havethe relations

A(r)2 + A’(r)f(r)’/2 = 2(a O+bbr)
3 = D(r) [4(r) — B(r)],

B(r)
2 + B’(r)f(r)’/2 = - (a +br)3 = 2D(r) [B(r) - 4(r)],

B(r)C(r) + C’(r)f(r)’/2 = — (a + hr)3 = 2C(r)D(r) + A(r)2 +

A (r)D(r) + D’(r)f (r)’/2 = 2(a+ hr)3 = D(r)2 — A(r)B(r).

(4.10)
Therefore, (1.4) is also a sufficient condition for self-duality. The curvature
form Q is thenexpressedas

/ Q
1 Q11\

Q = E(r) I , (4.11)
\,.—Q~Qi)
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where
E(r) = 2(a ab (4.12)

/ 0 w’Aw2+w3Aw4
Q

1=I
‘.\ w

2Aw’+w4Aw3 0

/ w1 Aw3 + w4Aw2 2w4Aw’ + 2w3Aw2

%~2w4Aw1+2w3Aw2w2AW4+w3AW’

The abovediscussionresultsin the following theorem.

Theorem 4.2. In order that theextendedTaub—NUTmetric ds~has a self-dual
Riemann curvature form, it is necessaryandsufficientthat theconstantsa, b, c, d
satisfy the constraint (1.4).

From theorems 4.1 and 4.2 it turns out that for the extendedTaub—NUT
metric d.s~the following two are equivalent:(1) d4 has a self-dualRiemann
curvature form, and (2) d.s~ is an Einsteinmetric.

Remarks. As was mentioned in the introduction,if a, b, c, d satisfytheconstraint
(1.4), the extendedTaub—NUTmetric coincideswith the original Taub—NUT
metric up to a constantfactoron setting4m = a/b. In this case, we come to the
self-dualityof the Taub—NUTmetric [10]. As is easilyshown,if *Q = Q, one
has~ = 0. Thus we verify the latter part of theorem 4.1 again. Further, since
condition (3.26) is satisfied by (1.4), singular geodesics for the Taub—NUT
metric can be regularized.

5. The Weyl curvature tensor

In this section, we are to ask if the Weyl curvature tensor of the extended
Taub—NUT metric is self-dual, in order to know to what extent the extended
Taub—NUT metric is actually extended.

For the Weyl curvature tensor given by (2.16),we define a two-form by

,.-‘z k £

rrij — ‘~ ‘~-‘jk1W i~ U) ,
which turns out to be expressed as

= — ~(R~ + R
11)w

1A ~J + ~Rw’ A ~J, (5.2)

where we have set = Q~becauseof the identification of the tangent bundle
with the cotangent bundle by use of the Riemannian metric. Then, at every point
of the manifold, the Weyl tensor is thought of as a linear transformationof the
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spaceof two-forms42 : = A
2T* (ER4 — {0}). Onecan break up 42 into self-dual

andanti-self-dualpartswith respectto the staroperator~,42 = ~+ +A~,where

A+ and A_ areeigenspacescorrespondingto the eigenvaluesof the *, + 1 and
—1, respectively. According to this decomposition,a basisof A2 canbetakento
be

W’Aw2+W3AW4, W’AW3+W4AW2, w’Aw4+W2AW3,

w1 Aw2 — w3 A w4, U)1 AU)3 — W4A U)2, w1 A U)4— w2A w3, (5.3)

where the two-forms in the first row are in A+ andthosein the secondrow in

A...With respectto the abovebasis,the representationmatrix W of the linear
transformationdefinedby (5.1) is known to takethe block diagonalform

/w± 0\
4= I (5.4)

~\0 W~)

where I~V+and W~are 3 x 3 matricesrepresentingthe inducedlinear transfor-
mation of the invariantsubspacesA+ andA, respectively.

To expressthe matricesW+ and W, we introducethe notation

h, = A(r)2 + A’(r)f(r)’/2, h
2 = D(r) [4(r) — B(r)],

h3 B(r)
2 + B’(r)f(r)~/2, h

4 = B(r)C(r) +

h5 = 2C(r)D(r) + 4(r)
2 + D(r)2, h

6 = A(r)D(r) + D’(r)f(r)’/
2,

h
7 A(r)B(r) — D(r)

2. (5.5)

These functions are coefficients appearing in the curvatureformsgivenby (2.9),
and subject to the relations

h
2 = —h6, h4 = —2h2. (5.6)

Then, after a calculation,we find that

W~= ~(h, +6h2—h3—h5+h7)W0,

= ~(h, — 6h2 —h3—h5 + h7)W0, (5.7)

where
7-1 0

w0=( -l
2

Thus we obtain the following proposition.

Proposition 5.1. A generalizedTaub—NUTmetricds~is conformallyself-dualor

conformallyanti-self-dual, i.e., W = 0 or W~= 0, accordingto whether

h,—6h2—h3—h5+h7=0, (5.8a)
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or

h1 + 6h2 — h3 — h5 + h7 = 0. (5.8b)

Beforegoing into the self-duality question, we reconsider the conformal flat-
nessquestionfor thegeneralizedTaub—NUTmetric.By definition,the general-
izedTaub—NUTmetric is conformallyflat, if andonly if W~= W = 0. Thus
the metric ds~is conformally flat, if andonly if h2 = 0 and h, — h3 — h5 + h7 = 0.
From h2 = 0, one has

~—log(r f(r)) = a—log g(r),

which is integratedto give r
2f(r) = c

0g(r) with a constantc0. It thenfollows
from (2.7) that A(r) = B(r). Thus one has h, = h3 from (5.5), so that the re-
mainingconditionfor conformalflatnessreducesto h5 = h7. Hence,from (5.5)
with r

2f (r) = c
0g(r) onefinds that c0 = 1. Thus we come to the necessary and

sufficient condition r
2f (r) = g (r) for conformal flatness,as in proprosition

2.2.
In the remainder of this section, we concentrateon the conformal (anti-)self-

duality of the extended Taub—NUTmetric given by (1.3). The condition(5.8a)
is put in the form

A’(r)f(r)’’!2—6[A(r) —B(r)]D(r) —B(r)2

— 2C(r)D(r) — 2D(r)2 + A(r)B(r) = 0. (5.9)

After a straightforward and lengthy calculation with (3.15) and (3.17), one
obtains an identity in r,

(c + 2dr) (2~/l + cr + dr2 —2—cr) = 0. (5.10)

In a similar manner, the conformal anti-self-duality condition (5.8b) can be
brought into the form

(c + 2dr)(2~l + cr + dr2 + 2 + cr) = 0. (5.11)

Equations(5.10)and (5.11) give rise to an equationfor the constantsa, b, c,d,
respectively.Therefore,if 2 + cr> 0, eq. (5.10) resultsin

c=d=0, (5.12)

and/or
d = c2/4. (5.13)

In the case of (5.12), we obtain the relation g (r) = r2f (r), so that the metric
ds~becomes conformally flat from proposition 2.2. In the case of (5.13), we are
left with the following theorem.
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Theorem 5.2. In order that theextendedTaub—NUTmetric ds~with 2 + cr >

0 havea self-dual Weyltensor or be conformallyself-dual, it is necessaryand
sufficientthat theconstantscandd satisfy(5.13). In thiscase,onehas

W = 2(a + br)(l + cr/2)2W0~ W = 0. (5.14)

In thecaseof2 + cr> 0, eq. (5.11) resultsin (5.12).

If it happensthat 2 + cr < 0, we have to considerthe anti-self-dualitycondi-

tion. Thenthe same relationsas (5.12) and (5.13) result from (5.11).Thus, in
contrast to the abovetheorem,we havethe following.

Theorem 5.3. TheextendedTaub—NUTmetricwith 2 + cr < 0 (i.e., r> 2/(c~)
hasan anti-self-dualWeyltensoror is conformallyanti-self-dual, if andonly if
the constantsc and d satisfy(5.13). In this case,onehas

W~= 0, W = 2(a + br)(l + cr/2)2W0~ (5.15)

In the caseof2 + cr < 0, the conformalself-dualitycondition (5.8a)or (5.10)

resultsin (5.12). That is, the metric ds~becomesconformallyflat.

Remark. Since the constraints(1.4) satisfythe condition (5.13), theorems5.2
and 5.3 show that the Taub—NUT metric is conformallyself-dualif 2 + cr> 0.
i.e., (a+br)/a > Oandconformallyanti-self-dualif2+cr< 0,i.e., (a+br)/a <

0. Note alsothat in this casethefactorin (5.14) or (5.15) becomesab/(a + hr)3.
as is expected from (4.11) and (4.12).
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